Cole Woody has earned the Barry Goldwater Scholarship for his research on personalized cancer-fighting vaccines. Photo courtesy UH.

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

Houston cell therapy company launches second-phase clinical trial

fighting cancer

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Rice and MD Anderson scientists are researching new methods for treating brain cancer by overcoming the blood-brain barrier. Photo via Getty Images.

Rice, MD Anderson receive $1.5 million to further brain cancer research

fresh funding

Rice University chemist Han Xiao, who also serves as director of the university’s Synthesis X Center, and cancer biologist Dihua Yu of The University of Texas MD Anderson Cancer Center have received a three-year, $1.5 million grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.

The funding will allow them to continue their research on treating brain metastasis by overcoming the blood-brain barrier, or the BBB, according to a news release.

Brain metastasis is the leading form of brain cancer, with survival rates below 20 percent within a year of diagnosis, according to the National Library of Medicine. It commonly originates from breast, lung and melanoma cancers.

The BBB typically acts as a protective barrier for the brain. However, it prevents most drugs from being able to directly reach the brain. According to Rice, only 2 percent of FDA-approved small molecule drugs can penetrate the BBB, limiting treatment options.

Xiao and Yu’s approach to dealing with the BBB includes a light-induced brain delivery (LIBD) platform. The advanced system employs nanoparticles that are embedded with a near-infrared dye for the transport of therapeutic agents across the BBB. The research will evaluate the LIBD’s ability to improve the delivery of small-molecule drugs and biological therapies. Some therapies have shown potential for reducing cancer growth in laboratory studies, but they have struggled due to limited BBB penetration in animal models.

“Our LIBD platform represents a novel strategy for delivering drugs to the brain with precision and efficiency,” Xiao said in a news release. “This technology could not only improve outcomes for brain metastasis patients but also pave the way for treating other neurological diseases.”

The Kleberg Foundation looks for groundbreaking medical research proposals from leading institutions that focus on “innovative basic and applied biological research that advances scientific knowledge and human health” according to the foundation.

“This research is a testament to the power of collaboration and innovation,” Xiao said in a news release. “Together, we’re pushing the boundaries of what’s possible in treating brain metastasis and beyond.”

Rice launched the Synthesis X Center, or Synth X, last spring. It was born out of what started about eight years ago as informal meetings between Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center. It aims to turn fundamental research into clinical applications through collaboration.

“This collaboration builds on the strengths of both research teams,” Xiao said in the release. “By combining SynthX Center's expertise in chemistry with Dr. Yu's expertise in cancer biology and brain metastases, we aim to create a transformative solution.”

Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

TMC names 2025 cohort of cancer treatment innovators

ready to grow

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. Photo via Getty Images

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Several Houston institutions scored funding from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

German biotech co. to relocate to Houston thanks to $4.75M CPRIT grant

money moves

Armed with a $4.75 million grant from the Cancer Prevention and Research Institute of Texas, a German biotech company will relocate to Houston to work on developing a cancer medicine that fights solid tumors.

Eisbach Bio is conducting a clinical trial of its EIS-12656 therapy at Houston’s MD Anderson Cancer Center. In September, the company announced its first patient had undergone EIS-12656 treatment. EIS-12656 works by suppressing cancer-related genome reorganization generated by DNA.

The funding from the cancer institute will support the second phase of the EIS-12656 trial, focusing on homologous recombination deficiency (HRD) tumors.

“HRD occurs when a cell loses its ability to repair double-strand DNA breaks, leading to genomic alterations and instability that can contribute to cancerous tumor growth,” says the institute.

HRD is a biomarker found in most advanced stages of ovarian cancer, according to Medical News Today. DNA constantly undergoes damage and repairs. One of the repair routes is the

homologous recombination repair (HRR) system.

Genetic mutations, specifically those in the BCRA1 and BCRA1 genes, cause an estimated 10 percent of cases of ovarian cancer, says Medical News Today.

The Cancer Prevention and Research Institute of Texas (CPRIT) says the Eisbach Bio funding will bolster the company’s “transformative approach to HRD tumor therapy, positioning Texas as a hub for innovative cancer treatments while expanding clinical options for HRD patients.”

The cancer institute also handed out grants to recruit several researchers to Houston:

  • $2 million to recruit Norihiro Goto from the Massachusetts Institute of Technology to MD Anderson.
  • $2 million to recruit Xufeng Chen from New York University to MD Anderson.
  • $2 million to recruit Xiangdong Lv from MD Anderson to the University of Texas Health Science Center at Houston.

In addition, the institute awarded:

  • $9,513,569 to Houston-based Marker Therapeutics for a first-phase study to develop T cell-based immunotherapy for treatment of metastatic pancreatic cancer.
  • $2,499,990 to Lewis Foxhall of MD Anderson for a colorectal cancer screening program.
  • $1,499,997 to Abigail Zamorano of the University of Texas Health Science Center at Houston for a cervical cancer screening program.
  • $1,497,342 to Jennifer Minnix of MD Anderson for a lung cancer screening program in Northeast Texas.
  • $449,929 to Roger Zoorob of the Baylor College of Medicine for early prevention of lung cancer.

On November 20, the Cancer Prevention and Research Institute granted funding of $89 million to an array of people and organizations involved in cancer prevention and research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston universities launch summer 2025 accelerators for student ventures

summer session

OwlSpark, a startup and small business accelerator for Rice University-affiliated ventures, has named the latest 11 companies to its program that focus on challenges across technology, health care, consumer products and other sectors. The program is hosted in tandem with the University of Houston’s RED Labs and will take place at the Ion.

The early-stage accelerator runs for 12 weeks and culminates at The Bayou Startup Showcase on July 31.

According to a news release from Rice, “the accelerator cultivates a vibrant environment where founders are empowered to build, test, and scale their ideas in a setting built for entrepreneurship.”

The program is divided into two tracks: one for high-growth tech startups and another for small businesses.

The latest OwlSpark class includes:

  • Web and mobile platform EasilyBEE, which boosts family and community engagement in K-12 schools
  • Diagnos, a wearable-integrated wellness platform that monitors health and prevents injuries in college athletes
  • Johnnie, an AI-powered records management software for rural and midsize first responder agencies
  • JustKindHumility, which offers faith-based travel journals
  • Klix, whichautomates early-stage clinical trial management from document screening to AI-driven patient outreach and eligibility checks
  • Lizzy’s Gourmet Gains, which offers high-protein, flavor-forward dips and dressings
  • NextStep, an AI-powered multilingual assistant helping underserved communities navigate resources for health care
  • A catheter-integrated sensor device PeriShield, which detects early infection in peritoneal dialysis patients
  • Right Design, which connects creatives with vetted employers, mentors and projects via job matching and commissions
  • UCoreAlly, which provides business support for biotech startups in marketing, business development, customer support, human resources and accounting
  • Ultrasound-based ablation system VentriTech that treats ventricular arrhythmias

The Owl Spark accelerator has supported 229 founders and launched 104 ventures with participants raising more than $116 million in funding since 2013, according to Rice.

Tesla's robotaxi service 'tentatively' to launch in Austin in June, Musk says

Tesla Talk

Elon Musk says Tesla is “tentatively” set to begin providing robotaxi service in Austin on June 22.

In a post on his X social media platform, Musk said the date could change because Tesla is “being super paranoid about safety.”

Investors, Wall Street analysts and Tesla enthusiasts have been anticipating the rollout of the driverless cabs since Musk said earlier this year that the service would launch in Austin sometime in June.

Last month, Musk told CNBC that the taxis will be remotely monitored at first and “geofenced” to certain areas of the city deemed the safest to navigate. He said he expected to initially run 10 or so taxis, increase that number rapidly and start offering the service in Los Angeles, San Antonio, San Francisco and other cities.

Musk has been promising fully autonomous, self-driving vehicles “next year” for a decade, but the pressure is on now as Tesla actually begins to operate a self-driving taxi service.

Sales of Tesla’s electric vehicles have sagged due to increased competition, the retooling of its most popular car, the Model Y, and the fallout from Musk’s turn to politics.

The Austin rollout also comes after Musk had a public blowup with President Donald Trump over the administration’s tax bill. Some analysts have expressed concern that Trump could retaliate by encouraging federal safety regulators to to step in at any sign of trouble for the robotaxis.